netmap.utils.netmap_config.NetmapConfig

class netmap.utils.netmap_config.NetmapConfig(input_data: str = 'data.h5ad', layer: str = 'X', output_directory: str = 'netmap', transcription_factors: str = '', tf_only: bool = True, penalize_error: bool = True, adata_filename: str = 'grn_lrp.h5ad', grn: str = 'grn_lrp.tsv', masking_percentage: float = 0.1, print_every: int = 100, optimizer: str = 'Adam', learning_rate: float = 0.005, epochs: int = 10000, n_models: int = 20, validation_size: float = 0.2, model: str = 'NegativeBinomialAutoencoder', xai_method: str = 'GradientShap', aggregation_strategy: str = 'mean')
__init__(input_data: str = 'data.h5ad', layer: str = 'X', output_directory: str = 'netmap', transcription_factors: str = '', tf_only: bool = True, penalize_error: bool = True, adata_filename: str = 'grn_lrp.h5ad', grn: str = 'grn_lrp.tsv', masking_percentage: float = 0.1, print_every: int = 100, optimizer: str = 'Adam', learning_rate: float = 0.005, epochs: int = 10000, n_models: int = 20, validation_size: float = 0.2, model: str = 'NegativeBinomialAutoencoder', xai_method: str = 'GradientShap', aggregation_strategy: str = 'mean') None

Methods

__init__([input_data, layer, ...])

read_yaml(yaml_file)

write_yaml(yaml_file)

Attributes

adata_filename

aggregation_strategy

epochs

grn

input_data

layer

learning_rate

masking_percentage

model

n_models

optimizer

output_directory

penalize_error

print_every

tf_only

transcription_factors

validation_size

xai_method